The Proof of the Feuerbach's Theorem

Below is one of the proofs of the Feuerbach's Theorem by K. J. SANJANA. It was published in Mathematical Notes (1924), 22 : pp 11-12, Copyright Edinburgh Mathematical Society 1924.

Please note that this proof contains some statements (such as $A H=$ $20 A_{1}, H K=2 H X, A I \cdot I E=2 R r$ in line 11 of the proof), which are not obvious and can be proven separately as lemmas.

This part of the proof only proves the theorem for the inclircle. The proof for the excircles can be done in a similar manner.

Theorem: The incircle is internally tangent to the nine-point circle. The nine-point circle is tangent to all 3 excircles.

An Elementary Proof of Feuerbach's Theorem.

Let O be the centre of the circumscribing circle of $\triangle A B C, A_{1}$ the middle point of $B C$, and $E A_{1} O F$ the diameter at right angles to $B C$. Draw $A X$ perpendicular to $B C$ and produce it to meet the circle in K. Let H be the orthocentre of $\triangle A B C$; join $O H$ and bisect it in N, the centre of the nine-point circle.

Draw $O Y$ perpendicular to and bisecting $A K$.
Join $E A$, which bisects $\angle B A C$ and contains the incentre I; draw $I D, N M$ perpendicular to $B C$. Join $A F$ and draw $A G$ perpendicular to $E F$; also draw $P I Q$ parallel to $B C$ and meeting $E F$ in P and $A X$ in Q.

Then we have $A H=20 A_{1}, H K=2 H X, A I . I E=2 R r$.
Also from similar triangles $\frac{P I}{I E}=\frac{F G}{A F}$ and $\frac{I Q}{A I}=\frac{A F}{F E}$.
Thus $\frac{P I \cdot I Q}{A I \cdot I E}=\frac{F G}{F E}$, so that $\frac{P I \cdot I Q}{2 R \cdot r}=\frac{F G}{2 R}$, and $P I . I Q=r . F G$.
Now the projection of $I N$ on $F E=I D-N M=r-\frac{1}{2}\left(O A_{1}+H X\right)$

$$
=r-\frac{1}{4}(A H+H K)=r-\frac{1}{2} A Y
$$

Hence the square of this projection $=r^{2}-r . A Y+\frac{1}{4} A Y^{2}$ $=r^{2}-r . G O+\frac{1}{4} A Y^{2}$
Again, the square of the projection of

$$
\begin{align*}
I N \text { on } B C & =D M^{2}=A_{1} M^{2}-A_{1} D . D X \\
& =\frac{1}{4} A_{1} X^{2}-P I \cdot I Q \\
& =\frac{1}{4} O Y^{2}-\boldsymbol{r} \cdot F G \ldots \ldots \ldots . . \tag{2}
\end{align*}
$$

Adding the results (1) and (2) we get

$$
\begin{aligned}
I_{1} N^{2} & =\frac{1}{4}\left(A Y^{2}+O Y^{2}\right)-r(F G+G O)+r^{2} \\
& =\frac{1}{4} R^{2}-r . R+r^{2} .
\end{aligned}
$$

Thus $I N=\frac{1}{2} R-r$, and the theorem is proved for the incircle. The proof for an excircle proceeds on exactly similar lines.
K. J. Sanjana.

